PRIME SOLUTION ROTARY FAN PRESS® PILOT TESTING REPORT FOR SLUDGE DEWATERING

Winchester WWTP

(Winchester, NH)

Testing Date(s): June 3rd – 4th, 2021

Dewatering Performance Simplified

> Prime Solution, Inc. 610 S. Platt Street Otsego, MI 49078 (269) 694-6666

Table of Contents

Key Information	
Pilot Summary	4
Pilot Equipment Description	4
Pilot Testing Results	5 - 13
Pilot On-Site Pictures	14
Conclusion	15

Key Information:

	Winchester WWTP						
Plant Site:	64 Duso Rd.						
	Winchester, NH 03470						
	Mr. Rick Meleshi						
Plant Contact:	603-903-3912						
	sewerdept@winchester.nh.gov						
	BAU / Hopkins						
Prime Solution Sales Representative:	Mr. Gene Weeks						
Time Solution Sales Representative.	207-245-8829						
	gweeks@nauhopkins.com						
Testing Date(s):	June 3 rd – 4 th , 2021						
Prime Solution Pilot Equipment:	RFP2.0-24S Rotary Fan Press 2.0						
Application Type:	Municipal						
Sludge Type:	Secondary						
Process Type:	Ox Ditch - Activated						
Sludge Age:	~2 - 3 Days						
pH Level:	6						
Feed Solids Ranged:	1.14 – 1.31% TS 73.9 – 78.3% TVS						
Volatile Solids Ranged:							
Dry Cake Solids Range:	21.1 – 23.4% TS						
Averaged Dry Cake Solids:	22.1% TS						
Averaged Capture Rate:	97.4% TSS						
Active Polymer Usage Range:	10.5 – 39.7 lbs/dry ton						
Optimal Polymer Usage:	10.5 lbs/dry ton						
Averaged Press Energy Usage:	0.422 kW						
Lab(s):	Prime Solution, Inc.						
	Mr. Michael Stone						
Prime Solution Regional Sales Manager:	(325) 430-2531						
	Mstone@psirotary.com						
	Mrs. Randi Yeaman						
Report Prepared By:	(269) 694-6666						
	ryeaman@psirotary.com						
Report #:	PR210614-1						

Prime Solution, Inc. Pilot Report for Winchester WWTP (Winchester, NH)

<u> Pilot Summary:</u>

On-site pilot testing was performed by Prime Solution, Inc. on June $3^{rd} - 4^{th}$, 2021 for the Winchester WWTP in Winchester, NH. The purpose of the pilot test was to determine the dewaterability of the Municipal Activated Secondary Sludge that is produced at the Plant. The results listed in this report confirm that the Rotary Fan Press 2.0 can effectively dewater the sludge produced at the Plant.

The Rotary Fan Press operated consistently over the two (2) day trial period with a total number of ten (10) samples pulled at various sludge flow rates. All samples were collected and tested by Prime Solution. The cake solids ranged in dryness from 21.1 - 23.4% TS during the testing period with excellent capture rates averaging 97.4% TSS.

<u>Piloting Equipment Description:</u>

The mobile pilot unit that was used for the testing is a full-scale Prime Rotary Fan Press® Model #RFP2.0-24S including all of the necessary equipment to condition the sludge/slurry, pump the filtrate back to the plant and transfer the dewatered cake solids for disposal.

➢ RFP2.0-24S Rotary Fan Press (2.0)	In-Line Grinder
PrimeBlend Emulsion Polymer	Flocculator Assembly
System	
Rotary Lobe Sludge Feed Pump	Folding Sludge Cake Conveyor
Wash Water Booster Pump	Central Operator Control Panel
Filtrate Pump w/ Float Control	Chemical Feed System

The Prime Rotary Fan Press® operates using the low differential pressure between the incoming conditioned sludge and the outgoing sludge cake combined with the very slow (<1 rpm) rotational motion of the two (2)

filter screens to advance the sludge through the press. As the conditioned sludge enters the annular space between the filter screens a pressure differential develops within the press where the liquid portion of the conditioned sludge seeks to the path of least resistance through the filter screens. The remaining solids are collected inside the annular space between the filter screens which advance towards the discharge end of the press. At the discharge end of the press, an adjustable restrictor gate arm slows down the advancing solids forming a "cake" plug. As the plug builds within the restriction discharge area, it pushes towards the inside walls of the filter screens and the slow rotation/friction of the filter screens continuously

moves the cake solids past the restrictor gate arm to be discharged for disposal or further processing. Operation of the Prime Rotary Fan Press® can either be continuous or intermittent depending on your application. Cleanup is a simple push of a button which will automatically run the wash cycle.

Prime Solution, Inc. Pilot Report for Winchester WWTP (Winchester, NH)

Pilot Testing Results:

The Rotary Fan Press was on-site Winchester WWTP for two days (June $3^{rd} - 4^{th}$, 2021) and operated at varying flow rates, polymer types and polymer dosages. Day one, June 3^{rd} , was used as set up. Then that day and the next day several samples were taken of the sludge cake/filtrate and sent to Prime Solution, Inc. for analysis. Using different polymers at different concentrations showed varying results, which was noted on the last day the mixing energy used to blend the polymer with the sludge had an equal effect on the cake solid dryness.

Results Overview:

Sludge flow ranged 1.43 – 1.67 gpm/ft², Feed solids averaged 1.22% TS, Solids loading ranged 2.85 – 3.83 lbs/hr/ft², Averaged cake solids were 22.1% TS, Capture rates averaged 97.4% TSS, Averaged press energy was 0.422 kW & pH Level was 6 for the testing period.

Polymer Consumption:

Drawing the sludge into the Rotary Fan Press system and at the suction side of the pump, the diluted/blended polymer was added to the incoming sludge where it was mixed in-line to form a stable floc before entering the dewatering channel(s) of the Rotary Fan Press. The polymer dosage for the pilot testing ranged between 10.5 - 39.7 active lbs/dry ton, with the optimal polymer dosage being 10.5 active lbs/dry ton.

The Table on The Following Page Details the Following:

Date and time of sample collection, Rotary Fan Press operating parameters: press speed %, energy usage (press kW), inlet and gate pressures, polymer results, sludge processing flow (gpm/ft²), feed solid concentration (% TS), solids loading (lbs/hr/ft²), cake solids (% TS) and capture rate (mg/L & % TSS).

									Plan	t: Wind	chester `	WWTP	1									
								Sludge Type: Municipal														
							Process: Secondary															
	Somuling Determ For Dress									Base Model Pilot Equipment: RFP2.0-24S – Rotary Fan Press (2.0)												
Sampling				Filt.	Rotary Fan Press Filt. Press Press					Polymer Neat Dil.				Sludge	Feed	ResultsSolidsCake	Conture Data					
Run #	Date	Time	Model Type	Area	Speed	Energy	Inlet PSI	Gate PSI	Туре	Flow	Water	Conc. %	Act. %	Active lbs/d.t.	Flow	Solids	Loading	Solids	mg/I	mg/L %TSS		
1	6/3	10:30	RFP2.0 -24S	4.2	% 20	KW 0.44	1.9	36	274	gph 0.193	gpm 1	0.32	40	37	gpm/ft ²	%1S 1.21	3.03	22.5	196	98.4		
2	6/3	11:36	RFP2.0 -24S	4.2	18	0.42	2.4	37	274	0.179	1	0.30	40	34.3	1.43	1.21	3.03	21.9	300	97.5		
3	6/3	12:36	RFP2.0 -24S	4.2	25	0.43	3.1	34	274	0.207	1	0.34	40	39.7	1.43	1.21	3.03	22.5	244	98.0		
4	6/3	1:52	RFP2.0 -24S	4.2	15	0.45	1.9	44	274	0.165	1	0.27	40	31.6	1.43	1.21	3.03	22.2	298	97.5		
5	6/3	3:04	RFP2.0 -24S	4.2	30	0.42	2.9	44	7802	0.138	1	0.23	40	26.4	1.43	1.21	3.03	22.4	368	97.0		
6	6/4	8:35	RFP2.0 -24S	4.2	30	0.42	2.4	46	7802	0.138	1	0.23	40	28.1	1.43	1.14	2.85	22.1	328	97.5		
7	6/4	9:20	RFP2.0 -24S	4.2	25	0.40	1.5	44	7802	0.138	1	0.23	40	28.1	1.43	1.14	2.85	21.2	304	97.7		
8	6/4	10:10	RFP2.0 -24S	4.2	25	0.41	2.4	44	7802	0.138	1	0.23	40	20.9	1.67	1.31	3.83	21.1	464	96.5		
9	6/4	11:34	RFP2.0 -24S	4.2	20	0.41	2.6	43	274	0.069	1	0.11	40	10.5	1.67	1.31	3.83	23.4	228	98.0		
10	6/4	1:55	RFP2.0 -24S	4.2	18	0.42	1.9	46	274	0.138	1	0.23	40	20.9	1.67	1.31	3.83	21.5	418	96.3		

On-Site Pictures:

Prime Solution, Inc. Pilot Report for Winchester WWTP (Winchester, NH)

Pilot Conclusion:

This demonstration successfully illustrated the simplicity, ease-of-use and semi-automatic operation of the Rotary Fan Press, along with its ability to consistently produce dry cake solids — while using low energy and wash water. The totally enclosed design of the Rotary Fan Press provided a clean and safe work environment that virtually eliminated odors and airborne contaminants. This environment promotes prolonged equipment and building life.

Along with ease-of-operation, low maintenance requirements were demonstrated and discussed with plant operators and engineers — as well as, the RFP's ease of installation into existing facilities. Due to its small footprint, it does not require special building modifications.

Prime Solution, Inc. and BAU/Hopkins would like to express their gratitude to the Winchester WWTP in Winchester, NH, and everyone involved, for the opportunity and support that made this pilot possible. We look forward to providing equipment that will suit the needs of the Plant.

Mr. Michael Stone Regional Sales Manager Phone: (325) 430-2531 E-Mail: <u>Mstone@psirotary.com</u> Web: <u>www.psirotary.com</u>

